质数,也就是素数。
指的是大于1的自然数,除了1和它自身外,不能被其他自然数整除的数。
素数的个数是无穷的,关于这一点的证明,古希腊数学家欧几里得早在他的著作《几何原本》中便给出了经典的证明。
也因为素数的个数是无穷的,所以就有人会问,素数的分布规律是什么?
100000以下有多少个素数?
一个随机的100位数多大可能是素数?
这也就促进了数论这门纯数学科的发展,也就有了是否每个大于5的偶数都可写成两个素数之和的哥德巴赫猜想。
也就有了是否存在无穷多的孪生素数,斐波那契数列内是否存在无穷多的素数,是否有无穷多个梅森素数,是否存在无穷个形式如X²+1的素数,诸如此类的问题。
这里面,有像“在一个大于1的数和它的2倍之间,必定存在至少一个素数”,“存在任意长度的素数等差数列”这样利用素数定理解决的问题。
但更多的,还只是一个猜想。
如果要分级的话,陈舟现在研究的克拉梅尔猜想,大概在梅森素数问题之上,在杰波夫猜想和孪生素数猜想之下。
所以,现在的陈舟有点不敢确定,自己的想法,究竟是不是对的。
一个历时近百年,没有人能够接近证明的数学猜想,他居然发现好像有点不对,需要去修正。
其实说不对的话,用词是不恰当的。
因为陈舟并不是证伪了,只是找到了“改进”之后的质数间距的猜想。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.lengleng.cc
(>人<;)